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LETTER TO THE EDITOR 

Critical points of two-dimensional Ising models 
C J Thompson and M 3 Wardrop 
Department of Mathematics, University of Melbourne, Parkville, Victoria 3052, 
Australia 

Received 4 February 1974 

Abstract. A general method for computing critical points of planar two-dimensional 
Ising models is outlined. As examples we compute the critical points of a pair of 
archimedean lattices. 

This letter was prompted by a recent article (Sykes et a1 1974) concerning critical 
percolation probabilities (pc) of closely similar lattices. It was stated in particular that 
small differences in computed series expansions for percolation probabilities cannot 
positively rule out the conjecture (Neal 1972) that the pair of archimedean lattices 
shown in figure 1 have identical pc. 

Figure 1 

To shed some light on this problem we have computed the exact critical tempera- 
tures for the Ising problems on lattices l (a )  and l(b). In terms of the variable z = 
exp(2K), K = J/kT, J being the nearest neighbour coupling constant we find critical 
values 

2 

zc = (1.9807308 . . . 
for l (a )  
for l(b) 

suggesting that the corresponding p c  should be close but probably not identical. 
Our method, outlined below, used to obtain (1) is based on the combinatorial 

approach and works for any regular two-dimensional planar lattice, It also reveals an 
interesting connection between lattice structure and critical points. 

After this work was completed an article (Syozi 1955) was brought to our attention 
which contained a method, based on the algebraic approach, for computing Ising 
model critical points. In particular Syozi computed the critical points of lattices l(a) 
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and l(b) finding z, = 2 and 2-36 . . . respectively. Syozi’s critical equation for l(b) is in 
fact incorrect and should read 

(2cosh2K,-l)(cosh2Kc-1)-1 = 2 cosh22Kcexp(2K,). (2) 

The solution of (2) agrees precisely with the value given in (1). 
Our method for computing Ising model critical points is based on Vdovichenko’s 

version of the combinatorial approach (Vdovichenko 1965) which expresses the 
partition function 2, for a planar lattice of N points and coordination number q as 

/ 1 m  \ 

where 
v = tanh K 

(3) 

(41 
and b, is the sum over all single, directed loops with r bonds, each bond being weighted 
by a factor exp(i$/2) where $ is the change of direction in going over to the next bond. 

Further reduction (for details see Vdovichenko 1965 or Stanley 1971) yields 

where A, are the eigenvalues of a transition matrix A ,  each of its elements being the 
‘probability matrix’ W, (the construction of which is described below) of a transition 
between adjacent lattice points. 

For our purposes we require only the maximum eigenvalue A,,, (in the thermody- 
namic limit) since from ( 5 )  it is clear that the critical point is given by 

U, = tanh K, = (Amax)-,. (6) 
Inspection of the diagonalizing procedures for the transition matrix A reveals that the 
required A,,, is simply the maximum eigenvalue of the probability matrix W,. This 
result is valid for any planar two-dimensional lattice, the only problem now being the 
construction of W,. 

By way of illustration, consider a unit cell of the square lattice surrounding the 
point P, with nearest-neighbour lattice points P1-Pc and bonds oriented in the direct- 
tions 1-4 as shown in figure 2. To leave P in the direction I it is clear that we must 
either come from P2 in the direction 4 turning through 7r/2 at P, from P, in the 

2 i p2 t 

Figure 2 
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w, = 

direction 1 with no turn, or from P4 in the direction 2 turning through -v /2 at P. 
Recalling that a turn through an angle + is weighted by a factor exp(i+/2) the above 
can be expressed probabilistically, or symbolically as 

(1)’ = (1) + a-I(2) + O(3) + 4 4 )  

where a = exp(iv/4). 

obtain 
Similarly by considering departures from P in the remaining three directions we 

(2) ’ = a( 1) + (2) + a-l(3) + O(4) 

(4) ’ = a-  ’( 1) + O(2) + a( 3) + (4) 

(3)’ = O(1) + 4 2 )  + (3) + a-1(4) 

yielding the matrix 

0 0 0 0 a 

0 0 0 a a - 1 0  

a 0 a - l O  0 0 
0 a - l a  0 0 0 

The matrix (7) is doubly stochastic with 1 + a  + a  = 1 + 2/2 as the maximum eigen- 
value. Hence from (6)  we obtain the well known result: U, = (1 + 42)- ,  for the square 
lattice. 

As a further illustration, consider the honeycomb lattice as shown in figure 3. 

L 2  

LI 

R2 

RI  

Figure 3 

Arguing as before we see that to leave L in the direction L1 say, we must have either 
come from R in the direction R3 or from R’ in the unit cell above in the direction R1, 
turning respectively through angles +v/3 and -v/3. That is 

a = exp(h/6). (Ll)’ = a(R3) +a-l(Rl), 

Five similar equations can be written down by inspection giving (with rows and 
columns in order L1 L2 L3 R1 R2 R3) 
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This matrix is also doubly stochastic with maximum eigenvalue a + a-1 = 2/3 giving 
V ,  = 1 /43 .  

At this stage the two archimedean lattices l(a) and l(b) and more complicated 
structures should present no difficulty. Lattice l(a) for example with unit cell and 
directions indicated in figure 4 yields (Ll)' = a3(L4) fa(R3) fa-l(L2) f ~ - ~ ( R 5 )  and 

LI  L2 R4 

Figure 4 

nine similar equations by inspection with a = exp(irr/8), giving 

w, = 

' 0  a-l O a3 O O O a O a-3 

0 1 0 0 0 a-3 0 a2 0 61-2 

0 a2 0 a-2 0 a-1 0 0 0 1 

0 0 0 1 0 a O C C - ~ O  a2 

0 a - 2 0  a 2 0  a3 0 1 0  0 
O O a O a-3 O a-l  O a3 O 

a-3 0 a2 0 a-2 0 1 0 0 0 
a-l 0 0 O 1 O a2 O a-2 O 

a 0 a - 2 0  a2 0 0 0 1 0 
a3 O 1 O O O a w 2 O  a2 O 

I 

(9) 

(with rows and columns in order L1-L5, RI-R5). The maximum eigenvalue of (9) 
was found to be 3 giving U, = 1/3 or z, = 2 (cf equation (1)). 

In general it is clear that the dimension of the matrix W, will be the number of 
lattice points in a unit cell times the coordination number of the lattice. For lattice 
l(b) there are four sites per unit cell giving a 20 x 20 matrix W,. The maximum eigen- 
value of the matrix was found on a computer to be 3.0392955 giving z, = 1.9807308. 

We remark in conclusion that the above method can be easily generalized to treat 
anisotropic Ising lattices by including weights tanh(J,/kT) for bonds connecting spins 
interacting with strength Ji. The critical point is then found by equating the maximum 
eigenvalue of the resulting matrix to unity. 

We would like to thank Dr M F Sykes for suggesting the problem and for valuable 
correspondence. 
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